Enantioselective synthesis of 3,4-dihydro-1,2-oxazepin-5(2 H)-ones and 2,3-dihydropyridin-4(1 H)-ones from β-substituted β- hydroxyaminoaldehydes

Adwait R. Ranade, Gunda I. Georg

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

The synthesis of 3,4-dihydro-1,2-oxazepin-5(2H)-ones and 2,3-dihydropyridin-4(1H)-ones from β-substituted β- hydroxyaminoaldehydes is reported. The β-hydroxyaminoaldehydes were prepared by enantioselective organocatalytic 1,4-addition of N-tert-butyl (tert-butyldimethylsilyl)oxycarbamate to α,β-unsaturated aldehydes (MacMillan protocol). Alkyne addition to the aldehydes followed by alcohol oxidation furnished N-Boc O-TBS-protected β-aminoynones. Removal of the TBS protecting group initiated a 7-endo-dig cyclization to yield previously unknown 3,4-dihydro-1,2-oxazepin-5(2H)-ones. Reductive cleavage of the N-O bond of the oxazepinones and Boc-deprotection provided 2-substituted 2,3-dihydropyridin- 4(1H)-ones via 6-endo-trig cyclization. 2,3-Dihydropyridin-4(1H)-ones are versatile intermediates that have been used for the synthesis of many alkaloids. The new protocol allows the synthesis of 3-dihydropyridin-4(1H)-ones carrying an array of substituents at C2 that cannot be prepared from commercial β-amino acids or by one-carbon homologation of proteinogenic amino acids. The use of readily available β-hydroxylaminoaldehydes expands the utility of our previously reported method to prepare 2,3-dihydropyridin-4(1H)-ones from β-amino acids as the source of diversity and chirality. A broad substrate scope is possible because β-aminoaldehydes can be prepared from α,β-unsaturated aldehydes by an enantioselective organocatalytic process.

Original languageEnglish (US)
Pages (from-to)984-992
Number of pages9
JournalJournal of Organic Chemistry
Volume79
Issue number3
DOIs
StatePublished - Feb 7 2014

Fingerprint Dive into the research topics of 'Enantioselective synthesis of 3,4-dihydro-1,2-oxazepin-5(2 H)-ones and 2,3-dihydropyridin-4(1 H)-ones from β-substituted β- hydroxyaminoaldehydes'. Together they form a unique fingerprint.

Cite this