Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens

Patrick L. Kelly, Jose M. Diego, Steven Rodney, Nick Kaiser, Tom Broadhurst, Adi Zitrin, Tommaso Treu, Pablo G. Pérez-González, Takahiro Morishita, Mathilde Jauzac, Jonatan Selsing, Masamune Oguri, Laurent Pueyo, Timothy W. Ross, Alexei V. Filippenko, Nathan Smith, Jens Hjorth, S. Bradley Cenko, Xin Wang, D. Andrew HowellJohan Richard, Brenda L. Frye, Saurabh W. Jha, Ryan J. Foley, Colin Norman, Marusa Bradac, Weikang Zheng, Gabriel Brammer, Alberto Molino Benito, Antonio Cava, Lise Christensen, Selma E. De Mink, Or Graur, Claudio Grillo, Ryota Kawamata, Jean Paul Kneib, Thomas Matheson, Curtis McCully, Mario Nonino, Ismael Pérez-Fournon, Adam G. Riess, Piero Rosati, Kasper Borello Schmidt, Keren Sharon, Benjamin J. Weiner

Research output: Contribution to journalArticlepeer-review

80 Scopus citations

Abstract

Galaxy-cluster gravitational lenses can magnify background galaxies by a total factor of up to ~50. Here we report an image of an individual star at redshift z = 1.49 (dubbed MACS J1149 Lensed Star 1) magnified by more than ×2,000. A separate image, detected briefly 0.26″ from Lensed Star 1, is probably a counterimage of the first star demagnified for multiple years by an object of ≳3 solar masses in the cluster. For reasonable assumptions about the lensing system, microlensing fluctuations in the stars' light curves can yield evidence about the mass function of intracluster stars and compact objects, including binary fractions and specific stellar evolution and supernova models. Dark-matter subhaloes or massive compact objects may help to account for the two images' long-term brightness ratio.

Original languageEnglish (US)
Pages (from-to)334-342
Number of pages9
JournalNature Astronomy
Volume2
Issue number4
DOIs
StatePublished - Apr 1 2018

Bibliographical note

Funding Information:
The Keck Observatory was made possible with the support of the W. M. Keck Foundation. NASA/STScI grants 14041, 14199, 14208, 14528, 14872 and 14922 provided financial support. P.L.K., A.V.F. and W.Z. are grateful for assistance from the Christopher R. Redlich Fund, the TABASGO Foundation and the Miller Institute for Basic Research in Science (U. C. Berkeley). The work of A.V.F. was completed in part at the Aspen Center for Physics, which is supported by NSF grant PHY-1607611. J.M.D. acknowledges support of projects AYA2015-64508-P (MINECO/FEDER, UE) and AYA2012-39475-C02-01 and the consolider project CSD2010-00064 funded by the Ministerio de Economia y Competitividad. P.G.P.-G. acknowledges support from Spanish government MINECO grants AYA2015-70815- ERC and AYA2015-63650-P. M.O. is supported by JSPS KAKENHI grants 26800093 and 15H05892. M.J. acknowledges support by the Science and Technology Facilities Council (grant ST/L00075X/1). R.J.F. is supported by NSF grant AST-1518052 and Sloan and Packard Foundation fellowships. M.N. acknowledges support from PRININAF- 2014 1.05.01.94.02. O.G. was supported by NSF Fellowship under award AST- 1602595. J.H. acknowledges support from a VILLUM FONDEN Investigator Grant (16599). HST imaging was obtained at https://archive.stsci.edu.

Funding Information:
We thank the directors of the Space Telescope Science Institute, the Gemini Observatory, the GTC and the European Southern Observatory for granting us discretionary time. We thank B. Katz, D. Kushnir, B. Periello, I. Momcheva, T. Royale, L. Strolger, D. Coe, J. Lotz, M. L. Graham, R. Humphreys, R. Kurucz, A. Dolphin, M. Kriek, S. Rajendran, T. Davis, I. Hubeny, C. Leitherer, F. Nieva, D. Kasen, J. Mauerhan, D. Kelson, J. M. Silverman, A. Oscoz Abaz and Z. Levay for help with the observations and other assistance. The Keck Observatory was made possible with the support of the W. M. Keck Foundation. NASA/STScI grants 14041, 14199, 14208, 14528, 14872 and 14922 provided financial support. P.L.K., A.V.F. and W.Z. are grateful for assistance from the Christopher R. Redlich Fund, the TABASGO Foundation and the Miller Institute for Basic Research in Science (U. C. Berkeley). The work of A.V.F. was completed in part at the Aspen Center for Physics, which is supported by NSF grant PHY-1607611. J.M.D. acknowledges support of projects AYA2015-64508-P (MINECO/FEDER, UE) and AYA2012-39475-C02-01 and the consolider project CSD2010-00064 funded by the Ministerio de Economia y Competitividad. P.G.P.-G. acknowledges support from Spanish government MINECO grants AYA2015-70815-ERC and AYA2015-63650-P. M.O. is supported by JSPS KAKENHI grants 26800093 and 15H05892. M.J. acknowledges support by the Science and Technology Facilities Council (grant ST/L00075X/1). R.J.F. is supported by NSF grant AST-1518052 and Sloan and Packard Foundation fellowships. M.N. acknowledges support from PRIN-INAF-2014 1.05.01.94.02. O.G. was supported by NSF Fellowship under award AST-1602595. J.H. acknowledges support from a VILLUM FONDEN Investigator Grant (16599). HST imaging was obtained at https://archive.stsci.edu.

Fingerprint Dive into the research topics of 'Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens'. Together they form a unique fingerprint.

Cite this