Frictional step climbing analysis of tumbling locomotion

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Tumbling robots provide the potential to produce increased mobility on smaller scales with respect to their size and/or complexity. In this paper we explore the frictional interactions between a tumbling robot and the terrain while climbing a single vertical step to illustrate the advantages of tumbling. We present a set of parametric configuration equations that express the relationships between the robot's configuration parameters (morphology, geometry, mass, etc.), the environmental/task parameters (step geometry, available coefficients of friction, etc.), and the performance parameters (step height). The required body coefficient of friction is examined in detail for idealized tumbling and wheel-tail robots.

Original languageEnglish (US)
Title of host publication2012 IEEE International Conference on Robotics and Automation, ICRA 2012
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4142-4147
Number of pages6
ISBN (Print)9781467314039
DOIs
StatePublished - Jan 1 2012
Event 2012 IEEE International Conference on Robotics and Automation, ICRA 2012 - Saint Paul, MN, United States
Duration: May 14 2012May 18 2012

Other

Other 2012 IEEE International Conference on Robotics and Automation, ICRA 2012
Country/TerritoryUnited States
CitySaint Paul, MN
Period5/14/125/18/12

Fingerprint

Dive into the research topics of 'Frictional step climbing analysis of tumbling locomotion'. Together they form a unique fingerprint.

Cite this