GST activity and membrane lipid saturation prevents mesotrione-induced cellular damage in Pantoea ananatis

Lilian P. Prione, Luiz R. Olchanheski, Leandro D. Tullio, Bruno C.E. Santo, Péricles M. Reche, Paula F. Martins, Giselle Carvalho, Ivo M. Demiate, Sônia A.V. Pileggi, Manuella N. Dourado, Rosilene A. Prestes, Michael J. Sadowsky, Ricardo A. Azevedo, Marcos Pileggi

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


Callisto®, containing the active ingredient mesotrione (2-[4-methylsulfonyl-2-nitrobenzoyl]1,3-cyclohenanedione), is a selective herbicide that controls weeds in corn crops and is a potential environmental contaminant. The objective of this work was to evaluate enzymatic and structural changes in Pantoea ananatis, a strain isolated from water, in response to exposure to this herbicide. Despite degradation of mesotrione, probably due a glutathione-S-transferase (GST) pathway in Pantoea ananatis, this herbicide induced oxidative stress by increasing hydrogen peroxide production. Thiol fragments, eventually produced after mesotrione degradation, could be involved in increased GST activity. Nevertheless, there was no peroxidation damage related to this production, as malondialdehyde (MDA) synthesis, which is due to lipid peroxidation, was highest in the controls, followed by the mesotrione- and Callisto®-treated cultures at log growth phase. Therefore, P. ananatis can tolerate and grow in the presence of the herbicide, probably due an efficient control of oxidative stress by a polymorphic catalase system. MDA rates depend on lipid saturation due to a pattern change to a higher level of saturation. These changes are likely related to the formation of GST-mesotrione conjugates and mesotrione degradation-specific metabolites and to the presence of cytotoxic adjuvants. These features may shift lipid membrane saturation, possibly providing a protective effect to bacteria through an increase in membrane impermeability. This response system in P. ananatis provides a novel model for bacterial herbicide tolerance and adaptation in the environment.

Original languageEnglish (US)
Article number70
JournalAMB Express
Issue number1
StatePublished - Dec 1 2016

Bibliographical note

Publisher Copyright:
© 2016, The Author(s).

Copyright 2018 Elsevier B.V., All rights reserved.


  • Fatty acid saturation
  • Glutathione-S-transferase
  • Herbicide degradation
  • Lipid peroxidation
  • Mesotrione

Fingerprint Dive into the research topics of 'GST activity and membrane lipid saturation prevents mesotrione-induced cellular damage in Pantoea ananatis'. Together they form a unique fingerprint.

Cite this