Hydrodynamic thermal-capillary model for Czochralski crystal growth: effects of crystal rotation

J. J. Derby, Q. Xiao

Research output: Contribution to journalConference articlepeer-review

Abstract

A Hydrodynamic Thermal-Capillary Model (HTCM) for heat transfer in Czochralski crystal growth systems is used to calculate steady-state, axisymmetric solutions for heat transfer and fluid mechanics while incorporating a self-consistent description of the free-boundaries of the melt/crystal interface, the melt meniscus, and the crystal diameter. The model employs a Galerkin finite-element method to discretize the model equations, and solutions are obtained using a Newton-Raphson iterative scheme. Sample results are presented for the growth of a large-dimension oxide crystal with thermophysical properties similar to those of gadolinium gallium garnet (GGG). Calculations with the HTCM show the effects of crystal rotation on heat transfer, flow in the melt, and melt/crystal interface shape. Sever deflections of the melt/crystal interface are calculated for moderate rotation rates, and limit points in the steady-state-solutions are found with respect to crystal rotation.

Original languageEnglish (US)
Pages (from-to)1-10
Number of pages10
JournalASME Pap
StatePublished - 1991
EventNational Heat Transfer Conference - Minneapolis, MN, USA
Duration: Jul 28 1991Jul 31 1991

Fingerprint

Dive into the research topics of 'Hydrodynamic thermal-capillary model for Czochralski crystal growth: effects of crystal rotation'. Together they form a unique fingerprint.

Cite this