Instantaneous energy separation in a free jet - Part II. Total temperature measurement

B. Han, R. J. Goldstein

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

The mechanism of energy separation in a free jet and its enhancement by acoustic excitation are investigated using an experimental technique to measure instantaneous velocity and total temperature simultaneously. The measured velocity and total temperature data are analyzed and compared by both time-averaged and spectral methods. By introducing the skewness of the total temperature fluctuation, the characteristics of energy separation can be identified. The results show that the frequencies of dominant total temperature fluctuation coincide with those of velocity fluctuation which represent the passing frequencies of vortices at give locations. This confirms that the mechanism of energy separation is induced by the motion of the coherent vortical structure which generates pressure fluctuation with the flow field. Spectral analysis of the data with acoustic excitation indicate that the enhancement of energy separation by acoustic excitation should result from vortex pairing processes induced by the acoustic excitation.

Original languageEnglish (US)
Pages (from-to)3983-3990
Number of pages8
JournalInternational Journal of Heat and Mass Transfer
Volume46
Issue number21
DOIs
StatePublished - Oct 2003

Bibliographical note

Funding Information:
The authors would like to appreciate the support by the Engineering Research Program of the Office of Basic Energy Sciences at the US Department of Energy.

Fingerprint

Dive into the research topics of 'Instantaneous energy separation in a free jet - Part II. Total temperature measurement'. Together they form a unique fingerprint.

Cite this