Integrated design and operation of renewables-based fuels and power production networks

Qi Zhang, Mariano Martín, Ignacio E. Grossmann

Research output: Contribution to journalArticlepeer-review

43 Scopus citations

Abstract

We assess the potential synergies of integrating renewables-based fuels and power production processes in one network, with a strong emphasis on the consideration of operational constraints and time-varying availability of renewable resources. We propose a multiscale mixed-integer linear programming model that combines superstructure-based synthesis and integrated production planning and scheduling. The model is applied to a particular region in Spain, where we analyze the feasibility of a renewables-based process network in terms of meeting given demands for gasoline, diesel, and electricity. The optimal and sometimes counterintuitive designs highlight the complex interactions and help identify bottlenecks in these process networks. Moreover, we solve each case using the multiscale model as well as a commonly used aggregate model; the two models obtain remarkably different solutions. The proposed multiscale model obtains high-quality solutions that stand the test of re-evaluation using a detailed model, whereas the aggregate model proposes network configurations that only satisfy small portions of the demands.

Original languageEnglish (US)
Pages (from-to)80-92
Number of pages13
JournalComputers and Chemical Engineering
DOIs
StatePublished - Mar 4 2019

Bibliographical note

Funding Information:
The authors gratefully acknowledge financial support from CAPD at Carnegie Mellon University .

Publisher Copyright:
© 2018 Elsevier Ltd

Keywords

  • Biofuels production
  • Integrated design and operation
  • Power production
  • Process network
  • Renewable energy

Fingerprint

Dive into the research topics of 'Integrated design and operation of renewables-based fuels and power production networks'. Together they form a unique fingerprint.

Cite this