Interactions between nitric oxide and prostacyclin in myocardial ischemia and endothelial cell cultures.

K. Schrör, I. Woditsch, H. Strobach, H. Schröder

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

This study investigates biochemical and functional interactions between NO and PGI2 that generate pathways in two different in vitro assays: porcine aortic endothelial cells (PAEC) and reperfused ischemic Langendorff hearts of rabbits. Using cGMP as an index of NO generation and 6-oxo-PGF1 alpha as an index for PGI2 production in endothelial cells, it is demonstrated that the two metabolic pathways for NO and prostacyclin formation act independent of each other. Moreover, NO appears to have an autocrine function in endothelial cells which does not exist with PGI2, probably because of a lack of PGI2 receptors. Endothelial damage in the course of myocardial ischemia is associated with a marked increase in mediator release whose inhibition has consequences for both myocardial and coronary function: inhibition of NO formation also inhibits PGI2 release and the recovery of coronary vessel tone with only minor if any effect on myocardial contractility. In contrast, inhibition of PGI2-generation results in marked deterioration of myocardial recovery with only minor changes in coronary perfusion. It is concluded from these data that PGI2 in endothelial injury is important for preservation of myocardial function while NO might mainly be involved in control of local vessel tone.

Original languageEnglish (US)
Pages (from-to)117-125
Number of pages9
JournalBasic research in cardiology
Volume86 Suppl 2
DOIs
StatePublished - 1991

Fingerprint Dive into the research topics of 'Interactions between nitric oxide and prostacyclin in myocardial ischemia and endothelial cell cultures.'. Together they form a unique fingerprint.

Cite this