Low dose organochlorine pesticides and polychlorinated biphenyls predict obesity, dyslipidemia, and insulin resistance among people free of diabetes

Duk Hee Lee, Michael W. Steffes, Andreas Sjödin, Richard S. Jones, Larry L. Needham, David R. Jacobs

Research output: Contribution to journalArticlepeer-review

355 Scopus citations

Abstract

Background: There is emerging evidence that background exposure to persistent organic pollutants (POPs) are important in the development of conditions predisposing to diabetes as well as of type 2 diabetes itself. We recently reported that low dose POPs predicted incident type 2 diabetes in a nested case-control study. The current study examined if low dose POPs predicted future adiposity, dyslipidemia, and insulin resistance among controls without diabetes in that study. Methodology/Principal Findings: The 90 controls were diabetes-free during 20 years follow-up. They were a stratified random sample, enriched with overweight and obese persons. POPs measured in 1987-88 (year 2) sera included 8 organochlorine (OC) pesticides, 22 polychlorinated biphenyls (PCBs), and 1 polybrominated biphenyl (PBB). Body mass index (BMI), triglycerides, HDL-cholesterol, LDL-cholesterol, and homeostasis model assessment value for insulin resistance (HOMA-IR) were study outcomes at 2005-06 (year 20). The evolution of study outcomes during 18 years by categories of serum concentrations of POPs at year 2 was evaluated by adjusting for the baseline values of outcomes plus potential confounders. Parallel to prediction of type 2 diabetes, many statistically significant associations of POPs with dysmetabolic conditions appeared at low dose, forming inverted U-shaped dose-response relations. Among OC pesticides, p,p'-DDE most consistently predicted higher BMI, triglycerides, and HOMA-IR and lower HDL-cholesterol at year 20 after adjusting for baseline values. Oxychlordane, trans-nonachlor, and hexachlorobenzene also significantly predicted higher triglycerides. Persistent PCBs with ≥7 chlorides predicted higher BMI, triglycerides, and HOMA-IR and lower HDL-cholesterol at year 20 with similar dose-response curves. Conclusions/Significance: Simultaneous exposure to various POPs in the general population may contribute to development of obesity, dyslipidemia, and insulin resistance, common precursors of type 2 diabetes and cardiovascular diseases. Although obesity is a primary cause of these metabolic abnormalities, POPs exposure may contribute to excess adiposity and other features of dysmetabolism.

Original languageEnglish (US)
Article numbere15977
JournalPloS one
Volume6
Issue number1
DOIs
StatePublished - 2011

Fingerprint

Dive into the research topics of 'Low dose organochlorine pesticides and polychlorinated biphenyls predict obesity, dyslipidemia, and insulin resistance among people free of diabetes'. Together they form a unique fingerprint.

Cite this