Maintaining connectivity in environments with obstacles

Onur Tekdas, Patrick A. Plonski, Nikhil Karnad, Volkan Isler

Research output: Chapter in Book/Report/Conference proceedingConference contribution

11 Scopus citations

Abstract

Robotic routers (mobile robots with wireless communication capabilities) can create an adaptive wireless network and provide communication services for mobile users on-demand. Robotic routers are especially appealing for applications in which there is a single mobile user whose connectivity to a base station must be maintained in an environment that is large compared to the wireless range. In this paper, we study the problem of computing motion strategies for robotic routers in such scenarios, as well as the minimum number of robotic routers necessary to enact our motion strategies. Assuming that the routers are as fast as the user, we present an optimal solution for cases where the environment is a simply-connected polygon, a constant factor approximation for cases where the environment has a single obstacle, and an O(h) approximation for cases where the environment has h circular obstacles. The O(h) approximation also holds for cases where the environment has h arbitrary polygonal obstacles, provided they satisfy certain geometric constraints - e.g. when the set of their minimum bounding circles is disjoint.

Original languageEnglish (US)
Title of host publication2010 IEEE International Conference on Robotics and Automation, ICRA 2010
Pages1952-1957
Number of pages6
DOIs
StatePublished - 2010
Event2010 IEEE International Conference on Robotics and Automation, ICRA 2010 - Anchorage, AK, United States
Duration: May 3 2010May 7 2010

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Other

Other2010 IEEE International Conference on Robotics and Automation, ICRA 2010
Country/TerritoryUnited States
CityAnchorage, AK
Period5/3/105/7/10

Fingerprint

Dive into the research topics of 'Maintaining connectivity in environments with obstacles'. Together they form a unique fingerprint.

Cite this