TY - GEN
T1 - Max-min feasible point pursuit for non-convex QCQP
AU - Kanatsoulis, Charilaos I.
AU - Sidiropoulos, Nicholas D.
PY - 2016/2/26
Y1 - 2016/2/26
N2 - Quadratically constrained quadratic programming (QCQP) has a variety of applications in signal processing, communications, and networking - but in many cases the associated QCQP is non-convex and NP-hard. In such cases, semidefinite relaxation (SDR) followed by randomization, or successive convex approximation (SCA) are typically used for approximation. SDR and SCA work with one-sided non-convex constraints, but typically fail to produce a feasible point when there are two-sided or more generally indefinite constraints. A feasible point pursuit (FPP-SCA) algorithm that combines SCA with judicious use of slack variables and a penalty term was recently proposed to obtain feasible and near-optimal solutions with high probability in these difficult cases. In this contribution, we revisit FPP- SCA from a different point of view and recast the feasibility problem in a simpler, more compact way. Simulations show that the new approach outperforms the original FPP-SCA under certain conditions, thus providing a useful addition to our non-convex QCQP toolbox.
AB - Quadratically constrained quadratic programming (QCQP) has a variety of applications in signal processing, communications, and networking - but in many cases the associated QCQP is non-convex and NP-hard. In such cases, semidefinite relaxation (SDR) followed by randomization, or successive convex approximation (SCA) are typically used for approximation. SDR and SCA work with one-sided non-convex constraints, but typically fail to produce a feasible point when there are two-sided or more generally indefinite constraints. A feasible point pursuit (FPP-SCA) algorithm that combines SCA with judicious use of slack variables and a penalty term was recently proposed to obtain feasible and near-optimal solutions with high probability in these difficult cases. In this contribution, we revisit FPP- SCA from a different point of view and recast the feasibility problem in a simpler, more compact way. Simulations show that the new approach outperforms the original FPP-SCA under certain conditions, thus providing a useful addition to our non-convex QCQP toolbox.
UR - http://www.scopus.com/inward/record.url?scp=84969749472&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84969749472&partnerID=8YFLogxK
U2 - 10.1109/ACSSC.2015.7421157
DO - 10.1109/ACSSC.2015.7421157
M3 - Conference contribution
AN - SCOPUS:84969749472
T3 - Conference Record - Asilomar Conference on Signals, Systems and Computers
SP - 401
EP - 405
BT - Conference Record of the 49th Asilomar Conference on Signals, Systems and Computers, ACSSC 2015
A2 - Matthews, Michael B.
PB - IEEE Computer Society
T2 - 49th Asilomar Conference on Signals, Systems and Computers, ACSSC 2015
Y2 - 8 November 2015 through 11 November 2015
ER -