Morphology and energetics of the molecular gas within a core and a diffuse region in the filamentary dark cloud GF 9

David R. Ciardi, Charles E. Woodward, Dan P. Clemens, David E. Harker, Richard J. Rudy

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

We have performed a CO, 13CO, and CS survey of a dense core region (GF 9-Core) and a diffuse filamentary region (GF 9-Fila) within the dark cloud GF 9 (LDN 1082). Spectra in each line were obtained toward 120 positions within each region covering areas of 8′ × 10′. GF 9-Core is associated with the Class 0 protostar IRAS PSC 20503+6006, while GF 9-Fila has no associated IRAS point sources. The median CO excitation temperature of the core region is 7.2 ± 0.5 K; for the filament region, the median temperature is 7.8 ± 0.5 K. The mass derived from the LTE isothermal analysis of 13CO is 53 ± 8 and 40 ± 6 M for GF 9-Core and GF 9-Fila, respectively. Using near-infrared extinction data to trace the H2 column density, the isothermal LTE assumptions for 13CO appear to break down at AV ≳ 3 mag. The near-infrared extinction data are used to correct the derived 13CO column densities, yielding mass estimates that are ∼20% larger than the LTE-derived masses. The average H2 volume densities for GF 9-Core and GF 9-Fila are ∼5000 ± 700 and ∼ 1700 ± 200 cm-3. Each region contains a 15 ± 3 M centrally condensed CS core, which is approximately 3 times more dense than the ambient 13CO regions. In GF 9-Core, the high-density gas core appears to be physically associated with the IRAS point source. Both high-density cores appear to be in virial equilibrium; however, the CS line widths in GF 9-Core are almost twice as large as those measured in GF 9-Fila. Because GF 9-Core is associated with the Class 0 protostar PSC 20503+6006, the CS line widths may be enhanced by outflow or infall motion. The additional nonturbulent line-broadening component caused by outflow/infall motion required to explain the line width implies a supersonic velocity of at least 0.3 km s-1 (Mach 1.5).

Original languageEnglish (US)
Pages (from-to)393-406
Number of pages14
JournalAstronomical Journal
Volume120
Issue number1
DOIs
StatePublished - Jul 2000

Keywords

  • ISM: Abundances
  • ISM: clouds
  • ISM: individual (LDN 1082, GF 9)
  • ISM: kinematics and dynamics
  • Stars: formation

Fingerprint Dive into the research topics of 'Morphology and energetics of the molecular gas within a core and a diffuse region in the filamentary dark cloud GF 9'. Together they form a unique fingerprint.

Cite this