Multifaceted Genome Control by Set1 Dependent and Independent of H3K4 Methylation and the Set1C/COMPASS Complex

Irina V. Mikheyeva, Patrick J.R. Grady, Fiona B. Tamburini, David R. Lorenz, Hugh P. Cam

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Histone modifiers are critical regulators of chromatin-based processes in eukaryotes. The histone methyltransferase Set1, a component of the Set1C/COMPASS complex, catalyzes the methylation at lysine 4 of histone H3 (H3K4me), a hallmark of euchromatin. Here, we show that the fission yeast Schizosaccharomyces pombe Set1 utilizes distinct domain modules to regulate disparate classes of repetitive elements associated with euchromatin and heterochromatin via H3K4me-dependent and -independent pathways. Set1 employs its RNA-binding RRM2 and catalytic SET domains to repress Tf2 retrotransposons and pericentromeric repeats while relying on its H3K4me function to maintain transcriptional repression at the silent mating type (mat) locus and subtelomeric regions. These repressive functions of Set1 correlate with the requirement of Set1C components to maintain repression at the mat locus and subtelomeres while dispensing Set1C in repressing Tf2s and pericentromeric repeats. We show that the contributions of several Set1C subunits to the states of H3K4me diverge considerably from those of Saccharomyces cerevisiae orthologs. Moreover, unlike S. cerevisiae, the regulation of Set1 protein level is not coupled to the status of H3K4me or histone H2B ubiquitination by the HULC complex. Intriguingly, we uncover a genome organization role for Set1C and H3K4me in mediating the clustering of Tf2s into Tf bodies by antagonizing the acetyltransferase Mst1-mediated H3K4 acetylation. Our study provides unexpected insights into the regulatory intricacies of a highly conserved chromatin-modifying complex with diverse roles in genome control.

Original languageEnglish (US)
JournalPLoS genetics
Volume10
Issue number10
DOIs
StatePublished - Oct 1 2014
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2014 Mikheyeva et al.

Fingerprint

Dive into the research topics of 'Multifaceted Genome Control by Set1 Dependent and Independent of H3K4 Methylation and the Set1C/COMPASS Complex'. Together they form a unique fingerprint.

Cite this