Nano-engineered mesenchymal stem cells increase therapeutic efficacy of anticancer drug through true active tumor targeting

Buddhadev Layek, Tanmoy Sadhukha, Jayanth Panyam, Swayam Prabha

Research output: Contribution to journalArticlepeer-review

22 Scopus citations


Tumor-targeted drug delivery has the potential to improve therapeutic efficacy and mitigate non-specific toxicity of anticancer drugs. However, current drug delivery approaches rely on inefficient passive accumulation of the drug carrier in the tumor. We have developed a unique, truly active tumor-targeting strategy that relies on engineering mesenchymal stem cells (MSC) with drug-loaded nanoparticles. Our studies using the A549 orthotopic lung tumor model show that nano-engineered MSCs carrying the anticancer drug paclitaxel (PTX) home to tumors and create cellular drug depots that release the drug payload over several days. Despite significantly lower doses of PTX, nano-engineered MSCs resulted in significant inhibition of tumor growth and superior survival. Anticancer efficacy of nano-engineered MSCs was confirmed in immunocompetent C57BL/6 albino female mice bearing orthotopic Lewis Lung Carcinoma (LL/2-luc) tumors. Furthermore, at doses that resulted in equivalent therapeutic efficacy, nano-engineered MSCs had no effect on white blood cell count, whereas PTX solution and PTX nanoparticle treatments caused leukopenia. Biodistribution studies showed that nano-engineered MSCs resulted in greater than 9-fold higher AUC lung of PTX (1.5 than PTX solution and nanoparticles (0.2 and 0.1 tissue, respectively) in the target lung tumors. Furthermore, the lung-to-liver and the lung-to-spleen ratios of PTX were several folds higher for nano-engineered MSCs relative to those for PTX solution and nanoparticle groups, suggesting that nano-engineered MSCs demonstrate significantly less off-target deposition. In summary, our results demonstrate that nano-engineered MSCs can serve as an efficient carrier for tumor-specific drug delivery and significantly improved anti-cancer efficacy of conventional chemotherapeutic drugs.

Original languageEnglish (US)
Pages (from-to)1196-1206
Number of pages11
JournalMolecular Cancer Therapeutics
Issue number6
StatePublished - Jun 2018

Bibliographical note

Funding Information:
The work was supported by funding from NIH (EB022558; to S Prabha and J. Panyam), University of Minnesota Grant in Aid program (to S. Prabha), and the College of Pharmacy-College of Veterinary Medicine collaborative research grant at the University of Minnesota (to S. Prabha). The authors would like to thank Paula Overn (Comparative Pathology Shared Resource) for immuno-histological staining of tumor tissues. Live animal imaging (bioluminescence and fluorescent imaging) was performed at the University Imaging Center at the University of Minnesota (Minneapolis, MN).

Publisher Copyright:
© 2018 American Association for Cancer Research.

Fingerprint Dive into the research topics of 'Nano-engineered mesenchymal stem cells increase therapeutic efficacy of anticancer drug through true active tumor targeting'. Together they form a unique fingerprint.

Cite this