Non-cytotoxic, in situ gelable hydrogels composed of N-carboxyethyl chitosan and oxidized dextran

Lihui Weng, Alexander Romanov, Jean Rooney, Weiliam Chen

Research output: Contribution to journalArticlepeer-review

121 Scopus citations

Abstract

A series of in situ gelable hydrogels were prepared from oxidized dextran (Odex) and N-carboxyethyl chitosan (CEC) without any extraneous crosslinking agent. The gelation readily took place at physiological pH and body temperature. The gelation process was monitored rheologically, and the effect of the oxidation degree of dextran on the gelation process was investigated. The higher the oxidation degree of Odex, the faster the gelation. A highly porous hydrogel structure was revealed under scanning electron microscopy (SEM). Swelling and degradation of the Odex/CEC hydrogels in PBS showed that both swelling and degradation were related to the crosslinking density of the hydrogels. In particular, the hydrogels underwent fast mass loss in the first 2 weeks, followed by a more moderate degradation. The results of long-term cell viability tests revealed that the hydrogels were non-cytotoxic. Mouse fibroblasts were encapsulated in the hydrogels and cell viability was at least 95% within 3 days following encapsulation. Furthermore, cells entrapped inside the hydrogel assumed round shape initially but they gradually adapted to the new environment and spread-out to assume more spiny shapes. Additionally, the results from applying the Odex/CEC system to mice full-thickness transcutaneous wound models suggested that it was capable of enhancing wound healing.

Original languageEnglish (US)
Pages (from-to)3905-3913
Number of pages9
JournalBiomaterials
Volume29
Issue number29
DOIs
StatePublished - Oct 2008

Bibliographical note

Funding Information:
The investigation was supported by a grant from the National Institutes of Health (DK068401), with partial support was also provided by an Innovative Technology Development grant from the Center for Biotechnology of SUNY-Stony Brook. The authors would like to thank Mr. Christopher Judd of Engelhard, Inc. for his assistance in HPLC analyses.

Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.

Keywords

  • Cell encapsulation
  • Chitosan
  • Dextran
  • Hydrogel
  • Oxidation

Fingerprint

Dive into the research topics of 'Non-cytotoxic, in situ gelable hydrogels composed of N-carboxyethyl chitosan and oxidized dextran'. Together they form a unique fingerprint.

Cite this