Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.)

Shiaoman Chao, Jorge Dubcovsky, Jan Dvorak, Ming Cheng Luo, Stephen P. Baenziger, Rustam Matnyazov, Dale R. Clark, Luther E. Talbert, James A. Anderson, Susanne Dreisigacker, Karl Glover, Jianli Chen, Kim Campbell, Phil L. Bruckner, Jackie C. Rudd, Scott Haley, Brett F. Carver, Sid Perry, Mark E. Sorrells, Eduard D. Akhunov

Research output: Contribution to journalArticlepeer-review

191 Scopus citations

Abstract

Background: Single nucleotide polymorphisms (SNPs) are ideally suited for the construction of high-resolution genetic maps, studying population evolutionary history and performing genome-wide association mapping experiments. Here, we used a genome-wide set of 1536 SNPs to study linkage disequilibrium (LD) and population structure in a panel of 478 spring and winter wheat cultivars (Triticum aestivum) from 17 populations across the United States and Mexico.Results: Most of the wheat oligo pool assay (OPA) SNPs that were polymorphic within the complete set of 478 cultivars were also polymorphic in all subpopulations. Higher levels of genetic differentiation were observed among wheat lines within populations than among populations. A total of nine genetically distinct clusters were identified, suggesting that some of the pre-defined populations shared significant proportion of genetic ancestry. Estimates of population structure (FST) at individual loci showed a high level of heterogeneity across the genome. In addition, seven genomic regions with elevated FST were detected between the spring and winter wheat populations. Some of these regions overlapped with previously mapped flowering time QTL. Across all populations, the highest extent of significant LD was observed in the wheat D-genome, followed by lower LD in the A- and B-genomes. The differences in the extent of LD among populations and genomes were mostly driven by differences in long-range LD ( > 10 cM).Conclusions: Genome- and population-specific patterns of genetic differentiation and LD were discovered in the populations of wheat cultivars from different geographic regions. Our study demonstrated that the estimates of population structure between spring and winter wheat lines can identify genomic regions harboring candidate genes involved in the regulation of growth habit. Variation in LD suggests that breeding and selection had a different impact on each wheat genome both within and among populations. The higher extent of LD in the wheat D-genome versus the A- and B-genomes likely reflects the episodes of recent introgression and population bottleneck accompanying the origin of hexaploid wheat. The assessment of LD and population structure in this assembled panel of diverse lines provides critical information for the development of genetic resources for genome-wide association mapping of agronomically important traits in wheat.

Original languageEnglish (US)
Article number727
JournalBMC Genomics
Volume11
Issue number1
DOIs
StatePublished - Dec 29 2010

Bibliographical note

Funding Information:
This work was supported by the funds provided by the USDA AFRI grant CRIS0219050, KSU Agricultural Experimental Station to E.A. and the USDA AFRI Wheat-CAP grant number 2006-55606-16629. We would like to thank Miranda Gray and two anonymous reviewers for valuable comments on the earlier version of the manuscript.

Fingerprint

Dive into the research topics of 'Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.)'. Together they form a unique fingerprint.

Cite this