Recent mathematical models of axonal transport

Chuan Xue, Gregory Jameson

Research output: Chapter in Book/Report/Conference proceedingChapter

2 Scopus citations

Abstract

An axon is a long thin projection of a neuron that allows for rapid electrochemical communications with other cells over long distances. Axonal transport refers to the stochastic, bidirectional movement of organelles and proteins along cytoskeletal polymers inside an axon, powered by molecular motor proteins. The movement from the cell body to the axon terminal is called anterograde transport and the movement in the opposite direction is called retrograde transport. Axonal transport is a vital process for the axon to survive and maintain its regular shape. Mathematical models have been developed to help understand how cargoes are transported inside an axon and how impairment of axonal transport affects cargo distribution. In this chapter, we review recent mathematical models of axonal transport and discuss open problems in this area.

Original languageEnglish (US)
Title of host publicationStochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology
PublisherSpringer International Publishing
Pages265-285
Number of pages21
ISBN (Electronic)9783319626277
ISBN (Print)9783319626260
DOIs
StatePublished - Jan 1 2017
Externally publishedYes

Bibliographical note

Publisher Copyright:
© Springer International Publishing AG 2017.

Fingerprint

Dive into the research topics of 'Recent mathematical models of axonal transport'. Together they form a unique fingerprint.

Cite this