Relationships between regional myocardial wall stress and bioenergetics in hearts with left ventricular hypertrophy

Julia Feygin, Qinsong Hu, Cory Swingen, Jianyi Zhang

Research output: Contribution to journalArticlepeer-review

25 Scopus citations

Abstract

This study utilized porcine models of postinfarction left ventricular (LV) remodeling [myocardial infarction (MI); n = 8] and concentric LV hypertrophy secondary to aortic banding (AoB; n = 8) to examine the relationships between regional myocardial contractile function (tagged MRI), wall stress (MRI and LV pressure), and bioenergetics (31P-magnetic resonance spectroscopy). Physiological assessments were conducted at a 4-wk time point after MI or AoB surgery. Comparisons were made with size-matched normal animals (normal; n = 8). Both MI and AoB instigated significant LV hypertrophy. Ejection fraction was not significantly altered in the AoB group, but significantly decreased in the MI group (P < 0.01 vs. normal and AoB). Systolic and diastolic wall stresses were approximately two times greater than normal in the infarct region and border zone. Wall stress in the AoB group was not significantly different from that in normal hearts. The infarct border zone demonstrated profound bioenergetic abnormalities, especially in the subendocardium, where the ratio of PCr/ATP decreased from 1.98 ± 0.16 (normal) to 1.06 ± 0.30 (MI; P < 0.01). The systolic radial thickening fraction and the circumferential shortening fraction in the anterior wall were severely reduced (MI, P < 0.01 vs. normal). The radial thickening fraction and circumferential shortening fraction in the AoB group were not significantly different from normal. The severely elevated wall stress in the infarct border zone was associated with a significant increase in chemical energy demand and abnormal myocardial energy metabolism. Such severe metabolic perturbations cannot support normal cardiac function, which may explain the observed regional contractile abnormalities in the infarct border zone.

Original languageEnglish (US)
Pages (from-to)H2313-H2321
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume294
Issue number5
DOIs
StatePublished - May 2008

Keywords

  • Left ventricular remodeling
  • Metabolism
  • Myocardial infarction

Fingerprint

Dive into the research topics of 'Relationships between regional myocardial wall stress and bioenergetics in hearts with left ventricular hypertrophy'. Together they form a unique fingerprint.

Cite this