TY - JOUR
T1 - Selective activation of insulin receptor substrate-1 and -2 in pleural mesothelioma cells
T2 - Association with distinct malignant phenotypes
AU - Hoang, Chuong D.
AU - Zhang, Xihong
AU - Scott, Paul D.
AU - Guillaume, Tenner J.
AU - Maddaus, Michael A
AU - Yee, Douglas
AU - Kratzke, Robert A
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2004/10/15
Y1 - 2004/10/15
N2 - Molecular mechanisms active in transforming human pleural cells remain incompletely understood. Our previous microarray analysis of malignant pleural mesothelioma revealed alterations in components of the insulin-like growth factor (IGF) system, implicating this signaling axis in tumorigenesis. Therefore, in this current study, we characterized the molecular phenotype and investigated the key signaling pathways of the IGF system in malignant pleural mesothelioma specimens. For the major IGF components, we assessed mRNA abundance and total protein levels. We measured IGF-I ligand-dependent activation of signaling pathways downstream of the type IIGF receptor in a subset of malignant pleural mesothelioma cell lines and determined the corresponding biological consequences. At the transcriptional level, we observed consistent changes in IGF components that may contribute to a malignant phenotype. IGF-I stimulation of cells resulted in enhanced activation of type I IGF receptor and IRS adaptor proteins. Differential activation of IRS-1 signaling was associated with cell growth, whereas IRS-2 signaling was associated with cell motility. Thus, these data suggest that multiple mechanisms likely contribute to malignant pleural mesothelioma tumorigenesis. Therefore, IGF system components represent novel malignant pleural mesothelioma therapeutic targets for investigation.
AB - Molecular mechanisms active in transforming human pleural cells remain incompletely understood. Our previous microarray analysis of malignant pleural mesothelioma revealed alterations in components of the insulin-like growth factor (IGF) system, implicating this signaling axis in tumorigenesis. Therefore, in this current study, we characterized the molecular phenotype and investigated the key signaling pathways of the IGF system in malignant pleural mesothelioma specimens. For the major IGF components, we assessed mRNA abundance and total protein levels. We measured IGF-I ligand-dependent activation of signaling pathways downstream of the type IIGF receptor in a subset of malignant pleural mesothelioma cell lines and determined the corresponding biological consequences. At the transcriptional level, we observed consistent changes in IGF components that may contribute to a malignant phenotype. IGF-I stimulation of cells resulted in enhanced activation of type I IGF receptor and IRS adaptor proteins. Differential activation of IRS-1 signaling was associated with cell growth, whereas IRS-2 signaling was associated with cell motility. Thus, these data suggest that multiple mechanisms likely contribute to malignant pleural mesothelioma tumorigenesis. Therefore, IGF system components represent novel malignant pleural mesothelioma therapeutic targets for investigation.
UR - http://www.scopus.com/inward/record.url?scp=5644280150&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=5644280150&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-04-1898
DO - 10.1158/0008-5472.CAN-04-1898
M3 - Article
C2 - 15492273
AN - SCOPUS:5644280150
VL - 64
SP - 7479
EP - 7485
JO - Cancer Research
JF - Cancer Research
SN - 0008-5472
IS - 20
ER -