Symmetry and the Chazy equation

Peter A. Clarkson, Peter J. Olver

Research output: Contribution to journalArticlepeer-review

71 Scopus citations

Abstract

There are three different actions of the unimodular Lie group SL(2, ℂ) on a two-dimensional space. In every case, we show how an ordinary differential equation admitting SL(2) as a symmetry group can be reduced in order by three, and the solution recovered from that of the reduced equation via a pair of quadratures and the solution to a linear second order equation. A particular example is the Chazy equation, whose general solution can be expressed as a ratio of two solutions to a hypergeometric equation. The reduction method leads to an alternative formula in terms of solutions to the Lamé equation, resulting in a surprising transformation between the Lamé and hypergeometric equations. Finally, we discuss the Painlevé analysis of the singularities of solutions to the Chazy equation.

Original languageEnglish (US)
Pages (from-to)225-246
Number of pages22
JournalJournal of Differential Equations
Volume124
Issue number1
DOIs
StatePublished - Jan 1 1996

Bibliographical note

Funding Information:
* Supported in part by a Nuffield Science Fellowship and SERC Grant GR H39420. E-mail: p.a.clarkson ukc.ac.uk. -Supported in part by NSF Grants DMS 91-16672 and DMS 92-04192. E-mail: olver ima.umn.edu.

Fingerprint Dive into the research topics of 'Symmetry and the Chazy equation'. Together they form a unique fingerprint.

Cite this