The effect of nanopore shape on the structure and isotherms of adsorbed fluids

D. Keffer, H. Ted Davis, Alon V. McCormick

Research output: Contribution to journalArticlepeer-review

64 Scopus citations

Abstract

A Grand Canonical Monte Carlo simulation method is used to determine the adsorption isotherms, interaction energies, entropies, and density distribution of a Lennard-Jones fluid adsorbed in smooth-walled nanopores of varying size and shape. We specifically include very crowded pores, where packing effects are important. Differences in the isotherms of slit, cylindrical, and spherical nanopores of varying sizes can be explained in terms of the adsorbate-adsorbate interaction energy, the adsorbate-pore interaction energy, and the density profiles, which influence the balance between the former and the latter energy contributions. The expectation from low loading studies that the most energetically favorable adsorbate-pore interactions maximize adsorption is not borne out at intermediate and higher loadings. Instead, the relationships between adsorbed amounts and pore size and shape are found to be strong functions of the depth and steepness of the external potential, the extent to which adsorbate-adsorbate repulsion establishes short range fluid order, and the accessible pore volume. This study has implications for high pore density processes in nanoporous materials, such as zeolite catalysis, separations, and templating in zeolite synthesis.

Original languageEnglish (US)
Pages (from-to)9-21
Number of pages13
JournalAdsorption
Volume2
Issue number1
DOIs
StatePublished - 1996

Keywords

  • Monte Carlo simulations
  • Nanopores
  • Zeolites

Fingerprint

Dive into the research topics of 'The effect of nanopore shape on the structure and isotherms of adsorbed fluids'. Together they form a unique fingerprint.

Cite this