The effects of sildenafil and acetazolamide on breathing efficiency and ventilatory control during hypoxic exercise

Sophie Lalande, Eric M. Snyder, Thomas P. Olson, Minelle L. Hulsebus, Marek Orban, Virend K. Somers, Bruce D. Johnson, Robert P. Frantz

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

The reduced arterial oxygen tension at high altitude impairs the ability to work. Acetazolamide improves arterial oxygen saturation (SaO2) by increasing ventilation but is associated with an increased work and cost of breathing. Depending on the settings, sildenafil can also increases SaO2 possibly through a reduction in pulmonary hypertension and interstitial edema, which could improve ventilation-perfusion matching. The objective of this study is to determine the effects of acetazolamide and sildenafil on ventilatory control and breathing efficiency (VE/VCO2) during submaximal steady-state hypoxic exercise in healthy individuals. Following 18 h of hypoxic exposure in an altitude tent at an oxygen concentration of 12.5% (simulated altitude of 4,300 m), 15 participants performed 10 min of hypoxic exercise on a stationary bicycle at 40% of their sea level peak oxygen uptake (VO2) while randomly receiving sildenafil 40 mg (SIL), acetazolamide 125 mg (ACZ) or a placebo (PLA). There was no difference in VO2 during exercise between conditions while SaO2 was greater with acetazolamide compared to both placebo and sildenafil. Acetazolamide increased ventilation (PLA 49.0 ± 3.2, SIL 47.7 ± 3.1, ACZ 52.1 ± 3.0 l/min) and reduced end-tidal CO2 (PET CO2) (PLA 32.1 ± 0.8, SIL 32.8 ± 0.9, ACZ 29.2 ± 0.7 mmHg) compared to placebo and sildenafil. Breathing was less efficient with acetazolamide (increased VE/ VCO2) in comparison to placebo and sildenafil (PLA 41.5 ± 1.0, SIL 40.4 ± 1.3, ACZ 45.4 ± 1.0) while sildenafil did not change VE/VCO2 during hypoxic exercise. In conclusion, acetazolamide increased ventilation and reduced breathing efficiency while sildenafil did not affect breathing efficiency despite a trend toward a blunted ventilatory response, possibly due to a reduction in pulmonary hypertension and/or ventilatory drive, during submaximal hypoxic exercise in healthy individuals.

Original languageEnglish (US)
Pages (from-to)509-515
Number of pages7
JournalEuropean Journal of Applied Physiology
Volume106
Issue number4
DOIs
StatePublished - 2009

Bibliographical note

Funding Information:
Acknowledgments The authors would like to thank the participants for their eVorts. Funding was provided by Mayo Foundation and National Institutes of Health (NIH) Grant HL71478. VKS was supported in part by NIH HL65176 and NIH MO1-RR00585.

Keywords

  • Acetazolamide
  • Altitude
  • Breathing
  • Exercise
  • Sildenafil
  • Ventilation

Fingerprint

Dive into the research topics of 'The effects of sildenafil and acetazolamide on breathing efficiency and ventilatory control during hypoxic exercise'. Together they form a unique fingerprint.

Cite this