The neural substrate of predictive motor timing in spinocerebellar ataxia

Martin Bares, Ovidiu V. Lungu, Tao Liu, Tobias Waechter, Christopher M. Gomez, James Ashe

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

The neural mechanisms involved in motor timing are subcortical, involving mainly cerebellum and basal ganglia. However, the role played by these structures in predictive motor timing is not well understood. Unlike motor timing, which is often tested using rhythm production tasks, predictive motor timing requires visuo-motor coordination in anticipation of a future event, and it is evident in behaviors such as catching a ball or shooting a moving target. We examined the role of the cerebellum and striatum in predictive motor timing in a target interception task in healthy (n=12) individuals and in subjects (n=9) with spinocerebellar ataxia types 6 and 8. The performance of the healthy subjects was better than that of the spinocerebellar ataxia. Successful performance in both groups was associated with increased activity in the cerebellum (right dentate nucleus, left uvula (lobule V), and lobule VI), thalamus, and in several cortical areas. The superior performance in the controls was related to activation in thalamus, putamen (lentiform nucleus) and cerebellum (right dentate nucleus and culmen-lobule IV), which were not activated either in the spinocerebellar subjects or within a subgroup of controls who performed poorly. Both the cerebellum and the basal ganglia are necessary for the predictive motor timing. The degeneration of the cerebellum associated with spinocerebellar types 6 and 8 appears to lead to quantitative rather than qualitative deficits in temporal processing. The lack of any areas with greater activity in the spinocerebellar group than in controls suggests that limited functional reorganization occurs in this condition.

Original languageEnglish (US)
Pages (from-to)233-244
Number of pages12
JournalCerebellum
Volume10
Issue number2
DOIs
StatePublished - Jun 2011

Bibliographical note

Funding Information:
Acknowledgements Supported by NIH grant NS40106, MH065598, the Department of Veterans Affairs, the Brain Sciences Chair, Proshek-Fulbright grant, Academia Medica Pragensis Foundation, and by MSM0021622404.

Keywords

  • Basal ganglia
  • Cerebellum
  • Functional imaging
  • Motor timing

Fingerprint

Dive into the research topics of 'The neural substrate of predictive motor timing in spinocerebellar ataxia'. Together they form a unique fingerprint.

Cite this