Uric acid lowering to prevent kidney function loss in diabetes: The preventing early renal function loss (PERL) allopurinol study

David M. Maahs, Luiza Caramori, David Z.I. Cherney, Andrzej T. Galecki, Chuanyun Gao, Diana Jalal, Bruce A. Perkins, Rodica Pop-Busui, Peter Rossing, Michael Mauer, Alessandro Doria

Research output: Contribution to journalArticlepeer-review

105 Scopus citations


Diabetic kidney disease causes significant morbidity and mortality among people with type 1 diabetes (T1D). Intensive glucose and blood pressure control have thus far failed to adequately curb this problem and therefore a major need for novel treatment approaches exists. Multiple observations link serum uric acid levels to kidney disease development and progression in diabetes and strongly argue that uric acid lowering should be tested as one such novel intervention. A pilot of such a trial, using allopurinol, is currently being conducted by the Preventing Early Renal Function Loss (PERL) Consortium. Although the PERL trial targets T1D individuals at highest risk of kidney function decline, the use of allopurinol as a renoprotective agent may also be relevant to a larger segment of the population with diabetes. As allopurinol is inexpensive and safe, it could be cost-effective even for relatively low-risk patients, pending the completion of appropriate trials at earlier stages.

Original languageEnglish (US)
Pages (from-to)550-559
Number of pages10
JournalCurrent diabetes reports
Issue number4
StatePublished - Aug 2013

Bibliographical note

Funding Information:
The consistency and strength of these prospective data and their independence from other DN risk factors and potential confounders strongly suggests that moderately elevated serum uric acid may have a role in the pathogenesis of DN and the deterioration of kidney function observed in T1D. This hypothesis is supported by population-based studies [42–45] in which hyperuricemia predicted chronic renal failure. In animal models mild uric acid elevation has also been shown to cause renal disease [10, 11]. Hypothesized pathogenic mechanisms of elevated uric acid in kidney disease include alterations of nitric oxide (NO) pathways, activation of the RAAS [46], induction of pro-inflammatory cytokines [12, 13], and increased oxidative stress resulting from the generation of uric acid by xanthine oxidase [14, 15]. In vitro, uric acid leads to decreased NO production [47], increased CRP [48], and induction of cyclooxygenase-2 [10]. In addition to suppressing NO production, uric acid may directly deplete NO [49]. Consistent with the in vitro data, experimental hyperuricemia induced in the rat by a uricase inhibitor has led to endothelial dysfunction and similar associations have been made in humans [50, 51]. Increased uric acid has also been shown to activate the intrarenal RAAS, leading to tubulointerstitial disease in animals and humans [13, 37, 52, 53]. Other mechanisms by which uric acid may contribute to DN include stimulation of cytokines such as TNF-α, TGFβ-1 [54, 55] and chemokines such as monocyte chemoattractant protein-1[10, 56] (Fig. 1). While the extent of the pathogenic role of uric acid in endothelial dysfunction, inflammation, and kidney disease in humans is still debated, such studies lend plausibility to a contribution of hyperuricemia to the development and progression of diabetic kidney disease.

Funding Information:
Acknowledgments Dr. Maahs was supported by a grant from NIDDK (DK075360). Dr. Caramori is supported by a Career Development Award from the Juvenile Diabetes Research Foundation. This project was supported by NIH grants R03 DK094484 and R34 DK097808, and by grant 17-2012-377 from the Juvenile Diabetes Research Foundation (JDRF). Its contents are the authors’ sole responsibility and do not necessarily represent official NIH or JDRF views.

Funding Information:
Conflicts of Interest David M. Maahs declares that he has no conflict of interest. M. Luiza Caramori declares that she has no conflict of interest. David Z.I. Cherney declares that he has no conflict of interest. Andrzej T. Galecki declares that he has no conflict of interest. Chuanyun Gao declares that she has no conflict of interest. Diana Jalal has received ASN honoraria for speaking on the role of uric acid in kidney and cardiac disease in the elderly. Bruce A. Perkins is a Senior Advisory Board Member for Neurometrix Inc.; and has been a Site investigator for a sponsored clinical trial for Medtronic Inc.; a Co-PI for a sponsored clinical trial by Boehringer Ingelheim; and has received speaker honoraria from Medtronic Inc., Roche, GlaxoSmithKline, Johnson & Johnson, Novo Nordisk, and Eli Lilly. Rodica Pop-Busui declares that she has no conflict of interest. Peter Rossing serves on the board for Astra Zeneca/BMS, Eli Lilly, Janssen, Novo Nordisk, and Astellas; has received grant support from Novo Nordisk, Novartis, and Abbott; has received payment for lectures including service on speaker’s bureaus from Astra Zeneca/BMS, Novartis, and Sanofi-Aventis; and has stock/stock options with Novo Nordisk. Michael Mauer declares that he has no conflict of interest. Alessandro Doria has received research grant support from Sanofi-Aventis; has received travel/accommodations expenses covered or reimbursed from the American Society of Nephrology and the Italian Society of Diabetology.


  • Allopurinol
  • Diabetes
  • Diabetic kidney disease
  • Diabetic nephropathy
  • Glomerular filtration rate
  • Kidney disease
  • PERL trial
  • Randomized clinical trial
  • Type 1 diabetes
  • Uric acid

Fingerprint Dive into the research topics of 'Uric acid lowering to prevent kidney function loss in diabetes: The preventing early renal function loss (PERL) allopurinol study'. Together they form a unique fingerprint.

Cite this